Battle of Kapyong

Modeling, Simulation, and Military Gaming Hot Wash April 21st, 2025

Introductions

Gabriel Rogers B.S. Mech. Engineering

Donovan Sheppard B.S. Math

Andrew Solano B.S. International Affairs

Jack KellerAditya YadavalliM.S. Computer ScienceM.S. Computer Science

Agenda

- Context & Motivation
 Research Question
- 3. Model
- 4. Analysis
- 5. Conclusion

Bottom Line Up Front

- Impossible win
- UN Forces abandoned equipment to climb to higher ground
- Steepness is the most important factor for victory

Battle of Kapyong – The Last Stand at Hill 677

Korean War – April 22–25, 1951

Context:

- Last stand against Chinese to prevent fall of Seoul
- UN forces retreated to Hill 677, a strategic high ground

Key Facts:

- 2,000 Chinese troops attacked
- 100 UN defenders supported by nearby artillery
- An ammo truck had to be abandoned during retreat
- Despite being outnumbered 20:1, the defenders held the hill

Result:

- The UN Successfully defended Hill 677
- UN: 33 casualties
- PVA: ~1,000 casualties

Research Question

Motivation:

It is difficult and sometimes impossible to carry heavy equipment up steep terrain. When faced with a
decision to abandon equipment to gain a steeper position, how critical is it to acquire a steeper position, and
how much equipment should be abandoned?

Question:

• How does the steepness of a defensive position and the amount of weaponry affect the attacker's casualty rate in battle, considering soldier fatigue?

Hypothesis:

• In general, steeper defensive positions result in higher attacker casualty rates. However, while additional heavy weapons initially increase casualty rates, their effectiveness diminishes at higher steepness due to soldier fatigue from carrying them.

Independent Variables	Dependent Variables
Hill Steepness	Casualty Rate (troops/hr)
Number of Weapons	Time (hrs)

Environment

Model Dimensions

- Netlogo: 201 x 201 pixels
- Real distance: 2.25 x 2.25 miles
 →18 x 18 meters per pixel

Pixel Parameters

- Elevation (m.)
- Steepness (°)

Battlefield diagram [12].

Satellite image (Google Earth)^[5].

Agents

UN Forces (2 PPCLI D Company & 16 NZFR Artillery)

Туре	Count	Varies? (Y/N)	
Soldier	100*	Ν	
Artillery	24	Ν	
Mortar	3	Υ	
Machine gun	2	Υ	

Chinese Forces (PVA 118th Division)

Туре	Count	Varies? (Y/N)	Waapoppy
Soldiar	2000** N	NI	weaponry
Solulei	2000	IN	Sub machina gun
			Sub-machine gun

UN machine guns

UN mortars

troops per agent

10

2

3

5

S

N

ticks

0

ticks

Georgia Tech

0

Model Dynamics: Rifles & Machine Guns

Shooting downhill is more effective than uphill.

Model Dynamics: Artillery & Mortars

Artillery and mortars target denser areas of troops.

Model Dynamics: Soldier Fatigue

Based on military and physiological research ^[1,3,8,10].

N

S

UN:

0.14

6

9

5

UN machine guns

UN mortars

troops per agent

Analysis: Casualty Rate vs. Steepness

Increasing Steepness Lowered Casualty Rate

Analysis: Casualty Rate vs. Weapons

Increasing Weapons Increased Casualty Rate

Georgia Tech

Analysis: Time vs. Steepness

Time and Steepness positively correlated; exponential relationship

18

Analysis: Time vs. Weapons

No Clear Correlation

Overall Findings

- < 50% steepness (15°)
 → rarely successful
- < 25% weapons (2
 MGs, 3 mortars)
 → rarely successful
- Favor Mixed Strategy
- Historical case: 100% steepness (30°), 25% weapons

Conclusion

Research Question

 How does the steepness of a defensive position and the amount of weaponry affect the casualty rate in battle, considering soldier fatigue?

Results

- Steeper terrain prolongs the battle; weapons increase lethality
- Steeper position leads to lower casualty rate; weapons to higher rate
- Steepness is the most important factor for victory

• Key Takeway

 Take the steepest hill, and bring as much weaponry as possible - provided you can make it to the top

References

1. Artioli, G. G., Bertuzzi, R. C., Roschel, H., Mendes, S. H., Lancha Jr., A. H., & Franchini, E. (2012). Determining the Contribution of the Energy Systems During Exercise. *Journal of Visualized Experiments*, 61(61). <u>https://doi.org/10.3791/3413</u>

2. Bjarnason, D. (2011). Triumph at Kapyong : Canada's Pivotal Battle in Korea. Dundurn.

3. Center for a New American Security. (2018, September 26). The Soldier's Heavy Load. Cnas.org. https://www.cnas.org/publications/reports/the-soldiers-heavy-load-1

4. Foot, R., Stairs, D., & Ray, M. (2024, April 16). Battle of Kapyong. Encyclopedia Britannica. https://www.britannica.com/event/Battle-of-Kapyong

- 5. Google Earth Pro. (November 17, 2023). Kapyong County, South Korea. 37°53'06.07"N, 127°29'41.54"E, Eye alt 13647 feet, elev 2137 feet. Airbus 2025. http://www.earth.google.com (Accessed February 2, 2025)
- 6. Johnston, W. (2011). A War of Patrols: Canadian Army Operations in Korea (pp. 99–103). UBC Press.
- 7. Key Military. (2021, March 16). Victory Against All Odds Battle of Kapyong. Key Military; Key Publishing Ltd. https://www.keymilitary.com/article/victory-against-all-odds
- 8. Knapik, J. J., Reynolds, K. L., & Harman, E. (2004). Soldier Load Carriage: Historical, Physiological, Biomechanical, and Medical Aspects. *Military Medicine*, 169(1), 45–56. https://doi.org/10.7205/milmed.169.1.45
- 9. Laforgia, J., Withers, R. T., & Gore, C. J. (2006). Effects of exercise intensity and duration on the excess post-exercise oxygen consumption. Journal of Sports Sciences, 24(12), 1247–1264. https://doi.org/10.1080/02640410600552064

References (cont.)

10. Laursen, B., Ekner, D., Simonsen, E. B., Voigt, M., & Sjøgaard, G. (2000). Kinetics and energetics during uphill and downhill carrying of different weights. *Applied Ergonomics*, 31(2), 159–166. <u>https://doi.org/10.1016/s0003-6870(99)00036-8</u>

11. The Memory Project. (2023, March 15). Ted Adye (Primary Source). The Canadian Encyclopedia. https://www.thecanadianencyclopedia.ca/en/article/mpsb-ted-adye

12. Ricketts, B. (2021, August 29). Battle of Kapyong. Canadians at Arms. https://canadiansatarms.ca/battle-of-kapyong/

13. Stairs, D. (2019). Canada and the Battle of Kapyong. The Canadian Encyclopedia. https://www.thecanadianencyclopedia.ca/en/article/battle-of-kapyong

14. Tobler, W. (1993). UC Santa Barbara NCGIA Technical Reports Title Three Presentations on Geographical Analysis and Modeling: Non-Isotropic Geographic Modeling; Speculations on the Geometry of Geography; and Global Spatial Analysis (93-1). UC Santa Barbara. https://escholarship.org/content/qt05r820mz/qt05r820mz.pdf

15. Watson, B. (2000). *Recipe for victory: The fight for Hill 677 during the Battle of the Kap'yong River, 24–25 April 1951*. Canadian Military History, 9(2). https://scholars.wlu.ca/cmh/vol9/iss2/2/

Appendix

- 1. Model Overview (Flowchart)
- 2. <u>Steepness vs. Equipment</u>
- 3. Soldier Fatigue
- 4. Exercise Recovery Over Time
- 5. Additional Analysis

Model Overview

Steepness vs. Equipment

x1.0 (real scale)

x0.75

x0.5

x0.01 (flat)

Soldier Fatigue

Key Assumptions

- Initial fatigue depends on both hill steepness and number of weapons [3,8,10]
- Baseline fatigue increases with initial fatigue ^[1]
- Fatigue reduces overall effectiveness ^[3]
 - Accuracy
 - Fire rate

Note: Only considering fatigue from physical exertion.

Time

According to the School of Physical Education and Sport at the University of Sao Paolo.^[1]

Analysis: Casualty Ratio vs. Steepness

Casualty Ratio is PVA Deaths / UN Deaths

Analysis: Casualty Ratio vs. Weapons

- Casualty Ratio is
- PVA Deaths / UN Deaths
- Higher Steepness, lower variance
- Higher weapons, higher casualty ratio
- Casualty ratio is low for steepness below .5 regardless of weapons

